
International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

971 www.ijergs.org

Software Development Risk Management Using OODA Loop

Sanjeev Kumar Punia, Dr. Anuj Kumar, Dr. Kuldeep Malik

Ph.D. Scholar, NIMS University, Jaipur, Rajasthan - INDIA

puniyasanjeev@hotmail.com

+91 999 919 0085

ABSTRACT - Software development projects are subject to risks like any other project. These risks must be managed in

order for the project to succeed. Current frameworks and models for risk identification, assessment and management are

static and unchangble. They lack feedback capability and cannot adapt to future changes in risk events. The OODA

(Observe, Orient, Decide and Act) loop, developed during the Korean war by fighter pilot Colonel John Boyd, is a

dynamic risk management framework that has built in feedback methods and readily adapts to future changes. It can be

successfully employed by development teams as an effective risk management framework, helping projects come in on

time and on budget.

KEYWORDS - OODA loop, risk management, dynamic risk management, requirement risks management, software

mitigation risks, unanticipated risks, futuristic risk assessments.

INTRODUCTION - Software development projects are subject to risks like any other project. Software development is

subject to unique risks which can be mitigated through effective risk management techniques. Risks are unavoidable and

must be managed. Successfully managing risks assists developers in completing the project on time and on budget.

Strategies selected to manage risk may result in a better product than originally anticipated. Identifying, analyzing,

tracking, and managing software risk aids crucial decision making including release readiness.

The fighter pilot Colonel John Boyd developed a series of four steps that he noticed fighter pilots followed during air to

air combat Korean War. These four steps are observe, orient, decide and act that is known as the OODA loop. Col. Boyd

went on to become a superb fighter pilot and Pentagon strategist. Current risk management frameworks are static and

unchangeable as well as they lack feedback capability and cannot adapt the future changes in risk events. The OODA loop

is a dynamic risk management framework that is built with feedback methods and readily adapts to future changes.

Software development teams can employ the OODA Loop to manage risks reduction that affects their projects.

LITERATURE REVIEW - Software development projects are not immune to risks. Risk management strategies are

crucial to identify, track and reduce risks. The software’s spend shows that only 2% of software was able to used as

delivered by the study of Department of Defense (DoD) in 1995. 75% was either never used or cancelled prior to delivery.

Cook et. al. [1] explained that $35.7 billion spent on software management and much research involves surveying current

software developers with program manager professionals. The similar result is found by using different strategies to

identify, track and reduce risk. The similar components of risk were identified by reviewing past research experience.

Ropponen et. al. [2] explained that the risk components include scheduling risks, timing risks, system functionality risks,

subcontracting risks, requirement management risks, personnel management risks as well as resource usage and

performance risks.

mailto:puniyasanjeev@hotmail.com

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

972 www.ijergs.org

The knowledge lacking of software suppliers adds an increased level of risk. Schinasi et. al. [3] stated that it poses a large

problem to DoD as they mostly contracts it out and does very little of its own software development. Risks starts from

changing requirements, lack of skills, fault technologies, gold plating and an unrealistic project schedule. According to

Suresh Babu et. al. [4], gold plating developers develop a better requirement beyond the objective. Mohtashami et. al. [5]

explained that, the development teams spread across a building, the country or even the world as companies grow.

Distributed development teams add risk to software projects as they are not in a centralized location. According to

Borland Software Corporation [6], collecting the requirements from stakeholders is very important but more important

than that is continuing to request requirement, analyze and specify requirements to eliminate redundancy and avoid

unnecessary risks. Cook et. al. [1] explained that requirements elicitation, analysis, documentation, verification, review,

approval, configuration control and traceability should be incorporated into sound risk management procedures.

The identification and planning is the best way for risk reduction early in the development cycle. Leonard et. al. [7]

explained that software development and inspections focus to avoid risks before introducing them into the project. The

time, money and effort are used during the development process to mitigate the risks before beginning. Jørgensen [8]

suggested that an increased identification of risks led to an over confidence and over optimism in estimating software

development efforts. Stoddard et. al. [9] explained that company history, structure, processes and reward systems can

facilitate the risk management process. The conceptualize requirements is a popular method for tracking, identifying and

managing the requirement risks. Various model based requirement management approaches exist for better identification,

tracking and managing requirements. In the past, models were not formally connected to software development such that

there was no way to ensure programmers design decisions used in the mode.

Uzzafer [10] stated that a lot of factors as project characteristics, risk management team, risk identification approaches

and project quality contribute and affect the level of project risk. Assessing the impact of project risk and residual

performance risk provide a better understanding of effectiveness and adequacy for risk management techniques. The risk

management capabilities play important roles in managing software projects either implemented in any fashion.

However, the conceptualization and development of risk management theories lags the requirements of practice.

Bannerman [11] found in research studies that risk management practice lags the understandings of risk management such

that current frameworks and models for risk identification, assessment and management are static and unchangeable. They

lack feedback capability and cannot adapt to future changes in risk events. Sarigiannidis et. al. [12] stated that dynamic

risk management frameworks provide futuristic assessments of risk events by coupling with static models that can

enhance the project success. The software development projects are greatly benefited from model based requirements

engineering as identifying, assessing, analyzing, verifying, tracking and managing requirements that reduce risk to

software projects. A big research is not conducted that relates the OODA loop for risk management in the software

development process. This work concerned mainly with agile software development. Steve Adolph [13] relates the OODA

loop to agile software development and argues that agility depends on the tempo that iterate through that loop. The

development speed depends on culture but not on methodologies or tools used.

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

973 www.ijergs.org

This paper is primarily an introduction to the OODA loop and agile software development. It briefly outlines the fitting of

OODA loop with the notion of agile software development and proposes research opportunities. Ullman [14] explained

the use of OODA loop to business and product development. He specifically explained the get stuck of business and

product development teams where action never occurs. He also explained that the guidelines to unstick the OODA loop

for making decisions and taking action.

Colonel John Body’s Loop - Colonel John Boyd was an air force fighter pilot and brilliant military strategist in United

State. During the Korean War, Boyd observed a cycle of four actions that pilots took during combat and named these

actions OODA loop. He explained that pilots with OODA loop are faster than others dominate dogfights. The pilots

without OODA loop forces constantly re-observe and re-orient themselves. OODA loop prevents the pilot from making

decisions and taking action to gain the upper hand. The OODA loop is composed of four steps: observe, orient, decide and

act as shown below.

Development teams cycle through these steps repeatedly. In OODA loop, observation phase deals with collection of data

for situation and surroundings. Orientation phase is the analysis of data to form a mental perspective. The decision phase

chooses a specific course of action based on gathered and analyzed data. Action phase is the physical act of executing the

decision. The results of the action should be observed and the cycle repeats till the completion of the requirements.

Although OODA loop created for air to air combat fighter pilots but it applies to risk management for software

development also. As fighter pilots apply the OODA loop to manage risk in combat same way stakeholders, project

managers and developers apply the OODA loop for prevention of crash and burn in software projects. The OODA loop

also assist to manage scheduling and timing risks, system functionality risks, subcontracting risks, requirement

management risks, resource usage and performance risks as well as personnel management risks.

The OODA Loop and Software Development Risk Management: Observe - The first step in risk management is to

identify or observe the risks so failing to identify risks can drastically harm software projects. There are four factors that

influence observations in the OODA loop that include outside information, unfolding circumstances, unfolding interaction

with environment and implicit guidance with control. These factors are external to the loop and assist developers and

project managers with risk identification by combining them. Outside information is required for effective risk

management. Software developers must receive absolute information from stakeholders because eliciting requirements

from stakeholders is time consuming.

Observe

Orient

Decide

Act

The OODA loop

FIGURE 1

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

974 www.ijergs.org

Early care should be taken for identifying all classes of stakeholders from all involved organizations. The development

can be complicate after missing a stakeholder requirement. The unfolding circumstances can change the risk posture in

requirement identification, design, development or test during development. One source of requirements creep is the

failing of capture requirements during the requirements identification phase. The cost and effort increases in integrating

new requirements as development progresses. Even more costly is to fix the bugs as development progresses.

Apply the OODA loop on a small scale is a good practice when new requirements or even coding bugs are identified. The

development teams must ensure the working of each component works as intended during the development progresses

and components completion. The components may have unexpected consequences during interfaces. These side effects

may be mitigate through careful planning and design. Interaction with the environment is also critical in developing

software for a system. The OODA loop is feed with implicit guidance and control at each stage. It is especially crucial

during observation to identify and plan for direct orders, key performance parameters, laws and regulations.

Orient - The input of orient phase is the generated information from the observation’s first step of the OODA loop. The

orientation aligns observed information into a well defined, logical manner to take decisions more readily. During this

stage, risks must be assessed based on probability of occurrence and the potential impact. Based on calculated composite

risk indices many risks can be ranked. The severity of the risk is proportional to composite risk index. Col. Boyd

identified five factors those contribute the orientation of the pilots based on observed information. These five factors

include cultural traditions, new information, analysis and synthesis, previous experiences and genetic heritage. The

relationships between the five factors are shown below.

Outside

Information
Implicit Guidance

and Control

Unfolding Interaction

with Environment

Unfolding

Circumstances

The observe step of the OODA loop

Observations

FIGURE 2

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

975 www.ijergs.org

The data, requirements, systems and circumstances change that leads to new information the team can use to identify and

orient the project to manage risks. This factor is actually a mini observe step built within orientation step. It is a reminder

for teams to constantly absorb new information and watch for unanticipated risks. The analysis and synthesis is a no

brainer while information and observations are useless without analysis. Analyze the identified risks allows teams to

determine appropriate and effective risk management techniques. Software can be analyzed for functionality, bugs and

completeness that can be synthesized and tested. The three factors as cultural traditions, genetic heritage and previous

experiences are very similar to each other for risk management of software development projects.

The cultural traditions refer to the culture and traditions of the organization. The team or organization may have a

preference for one software development or requirements model. The genetic heritage describes the management of

projects and risks for developers and stakeholders in software project. Development teams and project managers rely on

previous experiences to identify and manage risks in current projects. The past successfully or unsuccessfully completed

project risks may affect current projects also so team members use past project experience to understand the tracking and

mitigating of current risks.

Decide - The development team chooses the risk management strategy after identification and analysation of risk with

orientation of project goals. Additional implicit guidance, risk action plans and contingency plans turns into a problem

during this phase. The risk can be decrease greatly by the ability to identify, analyze, monitor and track requirements and

project status through the development lifecycle. It is much easier to plan and integrate requirements at the beginning of

the software development cycle. The cost and effort to implement new requirements, makes changes and fix bugs

increases as software development progresses. Feedback from decisions flows back to the observation step. The risk

management strategy chosen may affect the project schedule or budget and it may change although it might accomplish

the same function. The benefit of effectively managing requirements is based on the working of software feedback

occurrence when decisions are made that allow quick iteration through the OODA loop.

Act - Execute phase starts after the decision of risk management strategies. The risk management is not a quick process

but risks can be managed by quick fed back in the observation stage. In this we have to check the operation of software

Analysis &

Synthesis

Cultural

Information

Previous

Experience

Factors influencing the orient step of the OODA loop

Genetic

Heritage

New

Information

FIGURE 3

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

976 www.ijergs.org

components with it indentation and further to check the development to tweak the software or correct bugs that ensure

stakeholders happiness with the progress and results. The additional risk is added as requirements begin changing and

requirement creep sets. The risks should be tracked and the results of the risk management strategies recorded and shared.

Team members and stakeholders need to know the status of their project. Another iteration of the OODA loop is

performed if the risk is not reduced as anticipated.

The loop - All combined four steps with influencing factors are shown below. The OODA loop is not a once through

framework for risk management and it applied repetitively throughout the entire software development cycle. Risks

remain in the project development till project completion. Teams should not get stuck into observing and orienting to risks

and development status and must be decide and act on observed information.

The decision and action stages feedback flows back to the observation stage. Continually observe the results of team

decisions and actions. Repetitive iterations of the OODA loop will reduce software project risks and increase the

likelihood of completion on time and within budget.

CONCLUSION - The OODA loop is a tool for effective risk management like all projects. Software projects also have

the risk so software project teams can use the OODA loop as a risk management framework. Each step helps developers

and project managers to identify, track and manage risks. Due to the cyclic nature of the OODA loop, multiple iterations

can be applied to the project as risks evolve over time. Successful implementation of the OODA loop assists project

managers in completing their projects within budget and on time. We plan to use the OODA loop as a risk management

framework for a software project in the future. We will try to test its effectiveness over the course of the project. Each

identified risk will be tracked and all observations, decisions and actions will be recorded.

Outside

Information
Implicit Guidance

and Control

Unfolding Interaction

with Environment

Unfolding

Circumstances

Observations Decision

(Hypothesis)

Action

(Test)

Analysis &

Synthesis

Cultural

Information

New

Information

Genetic

Heritage

Previous

Experience
Unfolding

Interaction with

Environment Feedback

Orient Observe Decide Act

Forward

Feed

Forward

Feed

Forward

Feed

The full OODA loop as described by Col. John Boyd

FIGURE 4

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

977 www.ijergs.org

REFERENCES:

[1] D. A. Cook and T. R. Leishman "Requirements risk can drown software projects" Journal of the Quality Assurance

Institute, vol. 17, no. 2, pp. 56 - 64, 2012.

[2] J. Ropponen and K. Lyytinen, " Components of software development risk: How to address them? A project manager

survey" IEEE Transactions on Software Engineering, vol. 26, no. 2, pp. 86 - 94, 2010.

[3] K. V. Schinasi "Defense acquisitions: Knowledge of software suppliers needed to manage risks" United States General

Accounting Office, Washington D.C., 2009.

[4] G. N. K. Suresh Babu and S. K. Srivatsa, "Increasing success of software projects through minimizing risks"

International Journal of Research & Reviews in Software Engineering, vol. 1, no. 1, pp. 20 - 22, 2011.

[5] M. Mohtashami, T. Marlowe and V. Kirova "Risk management for collaborative software development" Information

Systems Management, vol. 23, no. 4, pp. 21 - 28, 2012.

[6] Borland Software Corporation "Mitigating risk with effective requirements engineering" Available:

http://www.borland.com/resources/en/pdf/white_papers/mitigating_risk_with_effective_requirements_engineering.pdf,

2012.

[7] J. G. Leonard, T. R. Adler and R. K. Nordgren "Improving risk management: Moving from risk elimination to risk

avoidance" Information and Software Technology, vol. 41, no. 1, pp. 28 - 35, 2013.

[8] M. Jørgensen "Identification of more risks can lead to increased over-optimism of and over confidence in software

development effort estimates" Information and Software Technology, vol. 52, no. 5, pp. 504 - 512, 2010.

[9] J. Stoddard and Y. H. Kwak "Project risk management: Lessons learned from software development environment"

Technovation, vol. 24, no. 11, pp. 914 - 919, 2011.

[10] M. Uzzafer "A new dimension in software risk management" World Acadamey of Science, Engineering and

Technology, vol. 64, pp. 341 - 343, 2010.

[11] P. L. Bannerman "Risk and risk management in software products: A reassessment" The Journal of Systems &

Software, vol. 81, no. 12, pp. 2117 - 2121, 2008.

[12] L. Sarigiannidis and P. D. Chatzoglou "Software development project risk management: A new conceptual

framework" Journal of Software Engineering & Applications, vol. 4, no. 5, pp. 294 - 308, 2011.

[13] Steve Adolph, “What lessons can the agile community learn from a maverick fighter pilot?,” In Proceedings of the

Agile Conference, Vancouver, BC, pp. 98 - 102, 2006.

[14] D.G. Ullman “The sound of a broken OODA loop” Crosstalk: Journal of Defense Software Engineering, vol. 20, no.

4, pp. 21 - 24, 2013

http://www.borland.com/resources/en/pdf/white_papers/

