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Abstract:  In this paper a theory of distributional two-dimensional (2-D) canonical cosine is developed using Gelfand-Shilov 
technique and defined some operators on these spaces also the topological structure of some of the S-type spaces of distributional 
two dimensional canonical cosine transform. 
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1. INTRODUCTION: 

 Linear canonical transform is useful tools for optical analysis and signal processing .The Fourier  

Analysis is undoubtedly the one of the most valuable and powerful tools in signal processing, image processing and many 

other branches of engineering .The fractional Fourier transform, a special case of linear canonical transform is studied 

through  different angles. Almeida [1], [2] Had introduced it and proved many of its properties Namias [5].Opened the 

way of defining the fractional transform through the Eigen value as in case of fractional Fourier transform. The 

conversional canonical cosine transform is defined as . 
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                                    Hence the canonical cosine transform of 1( )nf E R  can be defined by 

                                                            

   { ( )}( ) , , ,cC CTf t s f t K t s       

                         where right hand side has a meaning as the application of 
1Ef   to ( , ) .cK t s E

 

  As compared to one dimensional, canonical cosine transform has a considerably richer structure in two dimensional. 

The definition of distributional two dimensional canonical cosine transform is given in section 2. S-type spaces using 

Gelfand-shilov technique are developed in section 3.Section 4 is devoted for the operators on the above spaces. In section 
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5, discuss the result on the topological structures of some spaces. The notation and terminology as per Zemanian[6],[7]. 

Gelfand-Shilove[3],[4]. 

 2. DEFINITION OF TWO DIMENSIONAL (2D) CANONICAL COSINES TRANSFORMS: 

 Let 1( x )E R R  denote the dual of ( x )E R R .  Therefore the generalized canonical cosine-cosine transform of  

'( , ) ( x )f t x E R R  is defined as  
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 3. VARIOUS TESTING FUNCTION SPACES:           

In this section several spaces consisting of infinitely differentiable function are defined on the first and second quadrants 

of coordinate plane. 

3.1 The space 
, :a bCC  It is given by 
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The constant Ck,q and A depend on  . 

3.2 The space 
, :a bCC  

     ,

, , ,. / , sup ,                         (3.2)a b l K q k k

l k q t x l qCC E t x t D D t x C B k 

         

The constants ,l qC  and B depend on  . 

3.3 The space 
, ,a bCC 

  : 

This space is formed by combining the condition (3.1) and (3.2) 

    
1
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, , , ,: / , ,              (3.3)a b l q k l l k k

a b q l k I x tCC E t x t D D t x C A l B k  

          

, , 0,1,2............l k q   Where A,B,C depend on  . 

In next we have introduced subspaces of each of the above space that are used in defining the inductive limits of these 

spaces. 

3.4 The space 
,

,

a b

mCC :It is defined as, 
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For any 0  where m is the constant, depending on the function . 

3.5 The space 
,

,

a b

nCC
 :This space is given by 

      
      

1

, sup

, , , , , , ,: / , ,          (3.5)
ka b l k q k

n a b q l k I t x l qCC E t x t D D t x C n k 

            

For any 0   where n the constant is depends on the function . 

3.6 The space 
, , ,

,

a b n

mCC 

  :  

This space is defined by combining the conditions in (3.4) and (3.5). 
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For any 0, 0    and for given m 

> 0, n  > 0 unless specified otherwise the space introduced in (3.1) through (3.6) will henceforth be consider equipped 

with their natural, Hausdoff, locally convex topologies to be denoted respectively by, 

,
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These topologies are respectively generalized by the total families of seminorms. 
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  4 SOME BOUNDED OPERATORS IN S-TYPE SPACES:  

This section is devoted to the study of different types of linear operators, namely, shifting operator, differentiation 

operator, scaling operator, in the , ,a bCC 

  space. These operators are found to be bounded (continuous also) in the , ,a bCC 

 .
 

Proposition 4.1: If   , ,, a bt x CC 

  and 
is fixed real number then 

  , ,, , 0a bt x C t
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                         l l k kCA l B k 

   

  , ,  thus  , ,a bt x C 

  
 
for  0. t   

Proposition 4.2:  The translation (shifting) operator    : , ,T t x t x     is a topological automorphism on 
, ,a bC 

  

for 0 t  . 

Proposition 4.3: If   , ,, a bt x C 

   and 0  strictly positive number then    , ,, a bt x C 
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Proof: Consider     
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Proposition 4.4:
 
If 0  and   , ,, a bt x C 

   then the scaling operator.
 

, , , ,: a b a bR C C 
   defined R   

Where    , ,t x t x    is a topological automorphism. 

Proposition 4.5:The operator    , ,tt x D t x   is defined on the space 
, ,a bC 

  and transform this space into itself 

Proof: Let   , ,, a bt x C 
    ,if    , ,tD t x t x   we have, 
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   , ,, a bt x C 
 

 

  5 TOPOLOGICAL PROPERTIES OF 
,a bCC - SPACE: 

 This section is devoted to discuss the result on the topological structures of some of the spaces and the results exhibiting 

their relationship. Then attention is also paid to be strict inductive limits of some of these spaces.  

Theorem 5.1:   , ,,a b a bCC T   is a Frechet space  

Proof: As the family 
,a bA  of seminorms  , , , , , , 0l k q a b l k q





 generating 

,a bT  is countable it, suffices to prove the 

completeness of the space  , ,,a b a bCC T  . 

Let us consider a Cauchy sequence  n  in 
,a bCC . Hence for a given 0  there exist 

an , ,l k qN N  such that for , m n N  

    
1

sup
, , , ,
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a b l k q m n x t m nI

t D D                                                 (5.1) 

In particular for  0, ,l k q m n N                      
 

    
1

sup , ,m nI
t x t x  

                                                                            (5.2)
 

Consequently for fixed t in 1I    ,t x  is a numerical Cauchy sequence. 

let  ,t x  be the point wise limit of   ,m t x  using (5.2) we can easily deduce that   ,m t x  converges to   

uniformly on 1I .
   Thus   is continuous moreover, repeated use of (5.1) for different values l,k,q, yields that 

 
 is 

smooth i.e.
 E  further from,(5.1)  

We get,              , , , , , , ,a b ql k m a b l k q N       m n  

  
,

,
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taking m  and   is arbitrary we get,  
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Hence 
,a bCC  and it is the 

,a bT  limit of m  by (5.1). 

This proves the completeness of 
,a bCC  and  , ,,a b a bCC T   is a Frechet space. 

Proposition 5.2: If 1 2m m  then  
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The second part is clearly from the definition of topologies of these spaces. The space   

 
,
,

a bC  can be expressed as union of countably normed spaces.  

 6. CONCLUSION: 

In this paper two-dimensional canonical cosine is generalized in the form the distributional sense, and proved 

some operators on these spaces also discussed the topological structure of some of the S-type spaces. 
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